토스뱅크 66

대표적인 CNN 모델 - LeNet, ImageNet, AlexNet, VGGNet, GoogLeNet, ResNet

LeNetLeNet 이미지 분류 모델은 문서 인식을 위한 모델이며, 실용적인 응용분야에 CNN과 역전파 방법이 처음 적용된 모델이다. MNIST database미국 우편 공사의 우편번호 손글씨를 컴퓨터로 인식하기 위한 연구 과정에서 MNIST database가 구축되었는데,MNIST는 필기체 숫자 이미지를 모아놓은 데이터셋이다. 위의 이미지와 같이 다양한 스타일의 숫자 글씨들을 정확히 인식할 수 있는가에 대한 대표적인 Classification 문제다.  MNIST database는 28 x 28 픽셀의 흑백톤이미지로, 약 7만장의 이미지로 구성되어 있다. 손글씨는 사람마다 제각기 다른 형태로 쓰게 된다. 따라서 활자체를 인식하는 것보다 상당히 어려운 문제였다.  그러면 이제 LeNet의 모델 구조를 살..

Pooling Layer

Pooling Layer란?CNN에는 Convolutional Layer 외에도 Pooling Layer라는 특징적인 레이어가 있다. Pooling Layer는 단어 그대로 Pooling 연산이 이루어지는 레이어인데, Pooling Layer의 목적은 다운샘플링을 하는 것이다. 다운샘플링이미지에서 다운샘플링이란, 동일한 이미지를 좀 더 적은량의 정보로 표현하는 것이다.예를 들어 가로x세로 100px의 이미지를 50x50픽셀로 해상도를 절반으로 줄인다고 생각하면 된다. Pooling 연산Pooling 연산은 Convolution 연산과 비슷하게 이미지의 kernel을 옮겨 가면서 적용하는 데, 보통 stride를 2로 움직인다. 마찬가지로 이 영역을 대표하는 값 하나를 출력한다는 점에서 Convolutio..

Convolutional Layer(Feature Map, Kernel, Stride와 Padding)

Convolution Layer란?Convolution 연산이 수행되는 네트워크 레이어로, Convolution 연산은 결국 지역적 특성을 추출하는 과정이라고 볼 수 있다.Convolution 연산 방법Convoltion 연산은 어떻게 하는걸까? 간단히 말하자면 입력 데이터에 Kernel이라고 불리는 필터를 적용해서 값을 계산하는 과정이다.필터는 카메라의 렌즈와 비슷한 역할을 하는데, 카메라 필터는 렌즈앞에 씌워서 센서에 맺히는 상에 변화를 주는 역할로 어떤 입력이 필터를 통과하면 변형을 가하여 조금 바뀐 결과물이 나오는 것이다. 그럼 Convolution Filter는 어떤 계산을 하는걸까? Convolution Filter는 이미지 사이즈보다 작은 크기의 행렬이다. 아래 이미지에선 가로 3칸, 세로 ..

CNN(Convolutional Neural Network) 개념 잡기

CNN이란?강아지와 고양이를 구분하는 딥러닝을 만든다고 할 때, 이미지 데이터를 컴퓨터가 인식할 수 있는 형태로 표현하게 되는데 기본적으로 비트맵이란 형식으로 나타내게 된다.  비트맵은 가로x세로 크기가 있는 영역에 픽셀이라고 부르는 점을 찍어서 그림을 표현하는 방식이다. 각 픽셀은 픽셀값이라고 부르는 빛의 강도를 가지고 있다.  아래 숫자 1 이미지는 글씨 영역에 해당하는 윗 부분은 검은색으로 되어 있고 아래로 갈 수록 점점 밝은 회색으로 되어 있다. 흰색이 빛의 강도가 가장 강한 것으로 255, 검은색이 0으로 표현된다.  그렇다면컬러 이미지는 어떻게 표현할까? 빛의 삼원색인 빨강, 초록, 파랑을 각각 나눠서 표현하게 되는데 채널이라고 부르는 동일한 크기의 영역 각각에마찬가지로 빨강, 초록, 파랑 빛..

딥러닝 모델 성능 높이기

최적화가 어려운 이유1. 모델의 비선형성2. 고차원성과 과적합3. 그래디언트 소실 문제4. 하이퍼파라미터의 민감성하이퍼파라미터란?하이퍼파라미터란, 모델의 학습 과정에서 사용자가 사전에 설정해야 하는 값으로 모델의 성능 최적화를 위해 중요한 역할을 한다. 주로 딥러닝 학습 전에 설정되며, 학습 과정을 제어하는데 사용된다.모델의 학습 속도, 안정성, 최종 성능에 직접적인 영향을 미치며 적절한 하이퍼파라미터의 설정은 과적합 방지, 학습 효율, 모델 성능 최적화에 중요한 열할을 한다. 하이퍼파라미터의 종류1. 배치 크기(Batch Size)한 번의 학습 단계에 사용되는 데이터 샘플의 수이다. 이는 모델이 학습하는 데이터의 양을 결정해서 메모리 사용량과 학습 속도에 큰 영향을 미친다. 배치 크기가 작으면, 메모리..

로지스틱 회귀 - 경사 하강법

로지스틱 회귀의 가설 함수와 손실 함수를 봤으므로 이제 경사 하강법을 알아보자.  가설 함수와 손실 함수는 좀 다르지만, 경사 하강법을 하는 방법은 선형 회귀와 거의 동일하다.  시작점을 위해 처음에는 세타 값들을 모두 0 또는 모두 랜덤으로 지정한다. 그러면 현재 세타 값들에 대한 손실, 즉 현재 가설 함수에 대한 손실을 계산할 수 있다. 여기서부터 시작해서 세타를 조금씩 조율하며 손실을 계속 줄여나가야 한다.  예를 들어, $θ_0, θ_1, θ_2$... 이렇게 세타 값이 3개 있다고 가정하자. 손실 함수를 $θ$에 대해 편미분하고, 그 결과에 학습률 알파를 곱한다. 그리고 그 결과를 기존 $θ_0$에서 빼면 된다. 똑같이 $θ_1$과 $θ_2$도 업데이트 하면 된다. 이렇게 모든 세타값들을 업데이..

로지스틱 회귀 - 손실 함수

선형 회귀를 통해 하려고 하는 건 학습 데이터에 최대한 잘 맞는 가설 함수를 찾는 것이다. 그러기 위해선 가설 함수를 평가하는 어떤 기준이 있어야 하는데, 그 기준이 되는게 손실 함수이다. 로지스틱 회귀에서도 마찬가지다. 데이터에 잘 맞는 가설 함수를 찾고, 손실 함수를 이용해 가설 함수를 평가한다. 선형 회귀의 손실 함수는 평균 제곱 오차라는 개념을 기반으로 하는데, 데이터 하나하나의 오차를 구한 후에 그 오차들을 모두 제곱항 평균을 내는 작업을 한다. 로지스틱 회귀의 손실 함수는 평균 제곱 오차를 사용하지 않고, 대신 '로그 손실', 영어로는 log loss라는 것을 사용한다. 좀 더 어려운 푷ㄴ으로는 cross entropy라고도 한다.  로그 손실로그 손실은 아래와 같은데, 이를 로그 손실이라고 ..

로지스틱 회귀(Logistic Regression)와 시그모이드 함수 그리고 Decision Boundary

머신 러닝은 지도 학습과 비지도학습으로 나뉘는데, 지도 학습은 '회귀'와 '분류'로 나뉜다. 지도 학습회귀: 연속적인 값을 예측분류: 정해진 몇 개의 값 중에 예측ex. 어떤 이메일이 스팸인지 아닌지, 아니면 어떤 기사가 스포츠 기사인지 정치 기사인지 연예 기사인지 등 보통 분류 문제를 풀 때는, 각 결괏값에 어떤 숫자 값을 지정해 준다.예를 들어서 이메일이 스팸인지 아닌지 분류한다면, 보통 이메일에는 0이라는 값을 주고 스팸 이메일에는 1이라는 값을 주는 것이다. 이메일의 속성들을 가설 함수에 넣어서 0이 나오면 보통 이메일이고 1이 나오면 스팸 이메일이라고 할 수 있다.만약 어떤 기사가 스포츠 기사인지 정치 기사인지 연예 기사인지 분류하고 싶다면, 이번에는 가능한 결과가 3가지죠? 그러면 각각 0, ..

카테고리 없음 2024.09.15

대망의 부트캠프 중간 프로젝트 리뷰 - [한국경제신문 with toss bank] Tech 우수인재 양성을 위한 MLOps

머신러닝 수업을 다 나갈 때 즈음미니 프로젝트, 그러니까 중간 프로젝트를 시작한다고 했다.  그렇게 시작된 약 3주간의 중간 프로젝트..! 팀은정말 고맙게도 먼저 제안해준 친구가 있어서 조심스레 합류했다.  '조심스레' 는..진짜 아직 초짜에 생초짜라 할 줄 아는게 있나 싶기도 하고...내 나이가 적지 않은터라 편하지만은 않을 텐데 이렇게 먼저 제안을 해줬다는게 고마우면서도 민폐가 되지 않을까노심초사했다.  우선 결과부터 말하자면잘했다.  중간 프로젝트라 조금 가벼운 마음으로 임했으나다른 친구들은 매우 진지하고 깊게 파고든 덕분에'대상'을 타게 되었다.수상은 토스뱅크 사무실 투어를 하는 날에 진행됐는데,그때 CTO님도 봤고멘토님들의 발표도 들을 수 있어서 좋았다.생각보다 더 동기부여가 뽱뽱 됐달까~귀여운..

기타 2024.09.15

딥러닝 기초 이론(퍼셉트론, 순전파&역전파, 출력&손실 함수)

딥 러닝 프레임워크딥 러닝 모델을 설계, 훈련, 검증하기 위해 사용되는 소프트웨어 라이브러리나 도구 모음 필요성- 복잡한 수치 계산과 미분을 자동화하여 효율성을 증대 시킬 수 있음- 모델 컴포넌트를 모듈화 하여 재사용 가능- 다양한 하드웨어 환경의 확장을 용이하게 함 주로 사용되는 프레임워크딥러닝의 기초 이론퍼셉트론(Perceptron)인공 신경망의 가장 기본적인 형태퍼셉트론을 구성하는 노드(Node)는 인공 신경망에서 정보를 처리하는 기본 단위라고 할 수 있다. 각 노드는 여러 입력값을 받아 이에 가중치를 곱한 후 합산하여 출력을 생성하는데, 신경망에서는 이러한 노드들이 서로 연결되어 있으며, 이 연결을 통해 데이터가 입력부터 출력까지 흐르게 된다.  초기 퍼셉트론의 구조는 이러한 노드 단위로 각 입력..