로지스틱 회귀의 가설 함수와 손실 함수를 봤으므로 이제 경사 하강법을 알아보자. 가설 함수와 손실 함수는 좀 다르지만, 경사 하강법을 하는 방법은 선형 회귀와 거의 동일하다. 시작점을 위해 처음에는 세타 값들을 모두 0 또는 모두 랜덤으로 지정한다. 그러면 현재 세타 값들에 대한 손실, 즉 현재 가설 함수에 대한 손실을 계산할 수 있다. 여기서부터 시작해서 세타를 조금씩 조율하며 손실을 계속 줄여나가야 한다. 예를 들어, $θ_0, θ_1, θ_2$... 이렇게 세타 값이 3개 있다고 가정하자. 손실 함수를 $θ$에 대해 편미분하고, 그 결과에 학습률 알파를 곱한다. 그리고 그 결과를 기존 $θ_0$에서 빼면 된다. 똑같이 $θ_1$과 $θ_2$도 업데이트 하면 된다. 이렇게 모든 세타값들을 업데이..